Fermilab
The Tevatron Connection

August 2004

Theory of $\Delta\Gamma_{B_s}$

Ulrich Nierste Fermilab

$\mathrm{B_s}{-}\overline{\mathrm{B}_\mathrm{s}}$ mixing

Schrödinger equation:

$$i\frac{d}{dt} \begin{pmatrix} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{pmatrix} = \left(M - i\frac{\Gamma}{2}\right) \begin{pmatrix} |B_s(t)\rangle \\ |\overline{B}_s(t)\rangle \end{pmatrix}$$

where $B_s \sim \overline{b}s$ and $\overline{B}_s \sim b\overline{s}$.

3 physical quantities in $B_s - \overline{B}_s$ mixing:

$$|M_{12}|, \quad |\Gamma_{12}|, \quad \phi = \arg\left(-\frac{M_{12}}{\Gamma_{12}}\right)$$

Two mass eigenstates:

Lighter eigenstate: $|B_L\rangle = p|B_s\rangle + q|\overline{B}_s\rangle$.

Heavier eigenstate: $|B_H\rangle = p|B_s\rangle - q|\overline{B}_s\rangle$ with $|p|^2 + |q|^2 = 1$.

with masses $M_{L,H}$ and widths $\Gamma_{L,H}$.

Relation of Δm and $\Delta \Gamma$ to $|M_{12}|$, $|\Gamma_{12}|$ and ϕ :

$$\Delta m = M_H - M_L \simeq 2|M_{12}|, \qquad \Delta \Gamma = \Gamma_L - \Gamma_H \simeq 2|\Gamma_{12}|\cos\phi$$

 M_{12} stems from the dispersive (real) part of the box diagram, internal (\overline{t},t) .

 Γ_{12} stems from the absorpive (imaginary) part of the box diagram, internal (\overline{c}, c) . (u's are negligible).

 Γ_{12} stems from final states common to B_s and \overline{B}_s .

Crosses: Effective $|\Delta B|=1$ operators from W-exchange.

 Γ_{12} is a CKM-favored tree-level effect associated with final states containing a (\overline{c}, c) pair.

Theory prediction

$$\Delta\Gamma = \Gamma_L - \Gamma_H \simeq 2|\Gamma_{12}|\cos\phi$$

with $\cos \phi \simeq 1$ in the Standard Model.

Corrections to Γ_{12} of order Λ_{QCD}/m_b : Beneke, Buchalla, Dunietz 1996

Corrections to Γ_{12} of order $\alpha_s(m_b)$: Beneke, Buchalla, Greub, Lenz, U.N. 1998

Ciuchini, Franco, Lubicz, Mescia, Tarantino 2003

Prediction (updated to current values of m_b and m_s):

$$\left(\frac{\Delta\Gamma}{\Gamma}\right)_{B_s} = \left(\frac{f_{B_s}}{210\,\text{MeV}}\right)^2 \left[0.006\,B + 0.172\,B_S - 0.063\right]
= 0.12_{-0.03}^{+0.04}$$

using lattice results for hadronic parameters (Lattice 2004 average):

$$f_{B_s}=246\pm16\,\mathrm{MeV}, \qquad \qquad n_f=2\,\,\mathrm{and}\,\,n_f=2+1$$
 $B_S=0.86\pm0.07\,\mathrm{MeV}, \qquad \qquad n_f=0$

With a recent MILC result (hep-ph/0311130):

$$f_{B_s} = 260 \pm 29 \, \text{MeV}, \qquad n_f = 2+1$$

$$\Rightarrow \left(\frac{\Delta\Gamma}{\Gamma}\right)_{B_s} = 0.14 \pm 0.05$$

$$\frac{\Delta\Gamma}{\Delta m} = (4.0 \pm 1.6) \times 10^{-3}$$

Beneke, Buchalla, Lenz, U.N. 2003

The CDF experimental value

$$\frac{\Delta\Gamma}{\Gamma} = 0.71^{+0.24}_{-0.28} \pm 0.01$$
 constrained with $\Gamma_d = \Gamma_s$,
$$\frac{\Delta\Gamma}{\Gamma} = 0.65^{+0.25}_{-0.33} \pm 0.01$$
 unconstrained,

is $2.0\,\sigma$ or $1.5\,\sigma$ above the central value of the theory prediction.

⇒ nothing to worry about...yet.

New physics

Can new physics significantly enhance $\Delta\Gamma$?

Need to increase $|\Gamma_{12}|$ to enhance

$$\Delta\Gamma \simeq 2|\Gamma_{12}|\cos\phi,$$

but Γ_{12} stems from CKM-favored tree-level decays.

 \Rightarrow Any competitive effect from new physics would be seen in $b \to s$ decays of the B^+ or B_d .

But:

The measurement starts to constrain new physics scenarios with $\cos \phi \sim 0$.

Could theory seriously underestimate $\Delta\Gamma$?

The theoretical calculation uses the Heavy Quark Expansion (HQE), which is a power expansion in Λ_{QCD}/m_b . Non-analytical terms like

$$\frac{\sin(-c\,m_b/\Lambda_{QCD})}{m_b^n}$$

are not reproduced.

But the calculation of $\Delta\Gamma$ is very similar to the one of $\tau(B^+)/\tau(B_d)$, which agrees with experiment.

A large $\Delta\Gamma$ implies large B_s branching fractions into final states with quark content $(\overline{c}, c, \overline{s}, s)$ which are CP-even. In the small velocity limit $\Delta\Gamma$ comes from $B_s \to D_s^{+(*)}D_s^{-(*)}$ decays only.

Interesting cross-check:

U-spin symmetry \Rightarrow Study the (Cabibbo-suppressed) B_d decays into $(\overline{c}, c, \overline{d}, d)$ final states at the B factories, in particular $B_d \to D^{+(*)}D^{-(*)}$.

Litmus test of the HQE:

$$\Gamma_d = \Gamma_s \left[1 + \mathcal{O}(1\%) \right]$$

New physics can change this relation by a few %.

Keum, U.N. 1998

Conclusions

Theory predicts:

$$\left(\frac{\Delta\Gamma}{\Gamma}\right)_{B_s} = \left(\frac{f_{B_s}}{210\,\text{MeV}}\right)^2 [0.006\,B + 0.172\,B_S - 0.063]$$

$$\frac{\Delta\Gamma}{\Delta m} = (4.0 \pm 1.6) \times 10^{-3}$$

• With increasing statistics the measured central value for $\Delta\Gamma$ will come down.